

Genetic Approach to Cardiomyopathy

Objoon Trachoo, MD, PhD
Assistant Professor
Department of Medicine
Center for Medical Genomics
Faculty of Medicine Ramathibodi Hospital
Mahidol University
objoon.tra@mahidol.ac.th

Types of Cardiomyopathy

- Hypertrophic cardiomyopathy (HCM)
- Dilated cardiomyopathy (DCM)
- Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C)
- Restrictive cardiomyopathy (RCM)
- Others, e.g., left ventricular non-compaction (LVNC)

Hypertrophic Cardiomyopathy

Fabry disease

Friedreich's ataxia

Noonan syndrome

Costello syndrome

LEOPARD syndrome

Cardio-Facio-cutaneous syndrome

Hunter syndrome

Hurler syndrome

Hurler-Scheie syndrome

Maroteaux-Lamy syndrome

I-cell disease

Pompe syndrome

Beckwith-Wiedemann syndrome

Mitochondrial myopathy

Cytochrome C oxidase deficiency

Barth syndrome

Danon disease

Down syndrome

Proteus syndrome

Yunis-Varon syndrome

Pallister-Killian mosaic syndrome

Medium-chain acyl CoA dehydrogenase deficiency (MCAD)

Long-chain acyl CoA dehydrogenase deficiency (LCAD)

Multiple sulfatase deficiency

Dilated Cardiomyopathy

Duchenne muscular dystrophy

Becker muscular dystrophy

Emery-Dreifuss muscular dystrophy

Limb Girdle muscular dystrophy

Myotonic muscular dystrophy

Mitochondrial myopathy

Kearns-Sayre syndrome

Myotubular (centronuclear) myopathy

Nemaline myopathy

Cytochrome C oxidase deficiency

Barth syndrome

Danon disease

Fanconi anemia

Diamond-Blackfan syndrome

Sickle cell anemia

Medium-chain acyl CoA dehydrogenase deficiency (MCAD)

Long-chain acyl CoA dehydrogenase deficiency (LCAD)

Maroteaux-Lamy syndrome

Fabry disease

Restrictive Cardiomyopathy

Amyloidosis

Sarcoidosis

Fabry disease

Endomyocardial fibrosis

Loffler's eosinophilic endomyocardial diseas

Pseudoxanthoma elasticum

Desmin myopathy

Gaucher disease

Left Ventricular Noncompaction

Mitochondrial myopathy

Barth syndrome

Arrhythmogenic Right

Ventricular Dysplasia

Naxos disease

Carvajal syndrome

Cardiomyopathy Associated with Systemic Diseases

Heart Failure Society of America (HSFA) Guideline for Genetic Evaluation of Cardiomyopathy

- Family history taking
- Clinical screening in asymptomatic first-degree relatives
- Molecular genetic testing
- Genetic counseling: mendelian or complex

Recommendation for Careful Family History of ≥ 3 Generations

Cardiomyopathy Phenotype	Level of Evidence
Hypertrophic cardiomyopathy (HCM)	A
Dilated cardiomyopathy (DCM)	\mathbf{A}
Arrhythmogenic right ventricular dysplasia (ARVD)	\mathbf{A}
Left ventricular noncompaction (LVNC)	A
Restrictive cardiomyopathy (RCM)	В
Cardiomyopathies associated with extracardiac manifestations (Table 4)	A

Clinical Screening in Asymptomatic First-Degree Relatives

a. Cardiomyopathy Phenotype	Level of Evidence
Hypertrophic cardiomyopathy (HCM)	A
Dilated cardiomyopathy (DCM)	\mathbf{A}
Arrhythmogenic right ventricular dysplasia (ARVD)	A
Left ventricular noncompaction (LVNC)	В
Restrictive cardiomyopathy (RCM)	В
Cardiomyopathies associated with extracardiac manifestations (Table 4)	A

Clinical Screening Methods

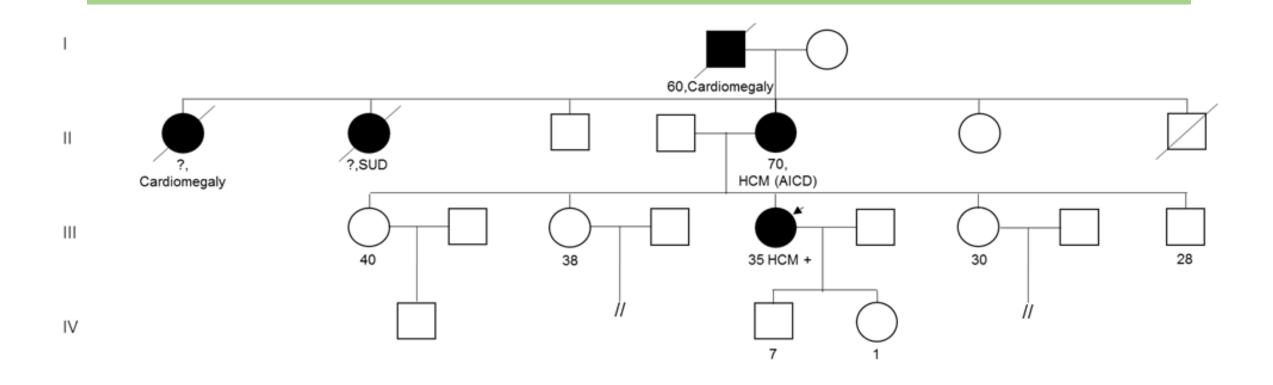
- History
- Physical examination
- Electrocardiogram
- Echocardiogram
- Creatinine kinase (at the initial evaluation only)
- Signal-averaged electrocardiogram (SAECG) in ARVD only
- Holter monitoring in HCM, ARVD
- Exercise treadmill testing in HCM
- Magnetic resonance imaging in ARVD

Clinical Screening Intervals

Cardiomyopathy Phenotype	Interval if genetic testing is negative and/or if clinical family screening is negative	Screening interval if a mutation is present	Level of Evidence B	
Hypertrophic	Every 3 years until 30 years of age, except yearly during puberty; after 30 years, if symptoms develop	Every 3 years until 30 years of age, except yearly during puberty; every 5 years thereafter.		
Dilated	Every 3–5 years beginning in childhood	Yearly in childhood; every 1—3 years in adults.		
ARVD/C	Every 3–5 years after age 10	Yearly after age 10 to 50 years of age.	C	
LVNC	Every 3 years beginning in childhood	Yearly in childhood; every 1-3 years in adults.	C	
Restrictive	Every 3–5 years beginning in adulthood	Yearly in childhood; every 1—3 years in adults.	C	

Consideration of Genetic Testing

Cardiomyopathy Phenotype	Level of Evidence
Hypertrophic cardiomyopathy (HCM)	A
Dilated cardiomyopathy (DCM)	В
Arrhythmogenic right ventricular dysplasia (ARVD)	A
Left ventricular noncompaction (LVNC)	C
Restrictive cardiomyopathy (RCM)	C
Cardiomyopathies associated with other extracardiac manifestations	A


Specific Genes Available for Screening

Cardiomyopathy Phenotype	Gene Tests Available*	Yield of Positive Results
НСМ	MYH7, MYBPC3, TNNT2 TNNI3, TPMI, ACTC, MYL2, MYL3.	account for 30%-40% of mutations, TNNT2 for 10%-20%. Genetic cause can be identified in 35%-45% overall; up to 60%-65% when the family history is
DCM	LMNA, MYH7, TNNT2, SCN5A, DES, MYBPC3, TNNI3, TPMI, ACTC, PLN, LDB3 and TAZ.	positive. 5.5%, 4.2%, 2.9%, for LMNA, MYH7, and TNNT2, respectively. All data are from research cohorts.
ARVD	DSP, PKP2, DSG2, DSC2	12%-40%, for DSP, PKP2, and DSG2, respectively
LVNC	Uncertain—see discussion	Uncertain—see
RCM	Uncertain—see discussion	discussion Uncertain—see discussion

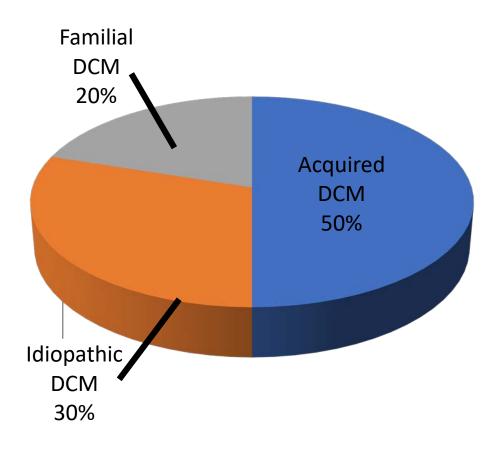
Genetic Counseling

- Mendelian for family with strong family and mutation detected
 - 50% chance for autosomal dominant
 - 25% chance for autosomal recessive if both parents are carriers
- Complex disease counseling for others
 - Genetics combined with environmental factors

Lessons from Hypertrophic Cardiomyopathy

Heterozygous p.Gln508* in MYBPC3

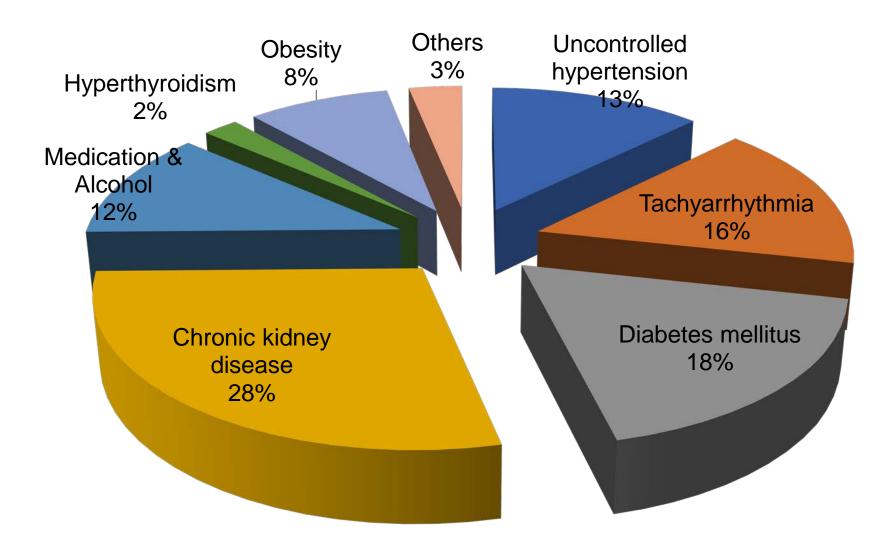
Guidelines for Clinical Screening of Healthy Family Members with Physical Examination, Echocardiography, and Electrocardiogram (ECG)


Age	Screening Guideline
<12 years	Optional but recommended, particularly if any of the following are present: Family history of early HCM-related death, early development of LVH, or other adverse complications Competitive athlete in intense training program Symptoms Other clinical findings that suggest early LVH
12-18 years	Repeat evaluation every 12-18 months
>18-21 years	Repeat evaluation approximately every 3-5 years or in response to any change in symptoms Tailor evaluation if the family has late-onset LVH or HCM-related complications

Lessons from Dilated Cardiomyopathy

Possible Familial **Familial DCM DCM** 4% Acquired Idiopathic DCM DCM 83% 11%

Global studies**



^{*}Srisukh Etiologies of Dilated Cardiomyopathy in Patients Manifested with Congestive Heart Failure in Ramathibodi Hospital, Ramathibodi medical journal Vol 37. No.4;November 2014

J Am Coll Cardiol. 2011 Apr 19;57(16):1641-9

^{**}Update 2011: clinical and genetic issues in familial dilated cardiomyopathy.

Etiologies of acquired DCM in Ramathibodi Hospital

Srisukh S, MD., Trachoo O, MD., Ph.D., Tangchareon T, MD. Etiologies of Dilated Cardiomyopathy in Patients Manifested with Congestive Heart Failure in Ramathibodi Hospital, Department of Medicine, Ramathibodi medical journal Vol 37. No.4;November – December 2014.

Summary of genetic variants found in patients diagnosed with idiopathic and familial DCM in Ramathibodi Hospital

ID	Sex	Age (years)	Family history	Genes	mRNA	protein	Zygosity	Classification
001	F	54	Pos	TTN	c.71731C>T	p.arg23911*	Het	Likely pathogenic
002	M	58	Pos	TTN DMD	c.9323A>G c.163G>A	p.Arg3585Cys p.Asn756Ser	Het Hem	VUS VUS
003	F	50	Neg	SCN5A	c.3575G>A	p.Arg1192Gln	Het	Known Pathogenic
004	М	57	Neg	SCN5A	c.3575G>A	p.Arg1192Gln	Het	Known Pathogenic
005	M	37	Neg	LDB3	c.1903G>A	p.Trp388Arg	Het	Likely pathogenic
006	M	57	Neg	PSEN2 LDB3	C.640G>T C.493C>T	p.Val214Leu p.Arg165Trp	Het Het	VUS VUS
007	F	43	Neg	TTN	c.1423G>A	p.Ser3373Asn	Het	VUS
008	M	74	Neg	No variant found	N/A	N/A	N/A	N/A
009	M	56	Neg	No variant found	N/A	N/A	N/A	N/A

Thank you for your attention